Какая почва лучше удерживает влагу? Почва, где больше глины Почва, где больше песка

NO-TILL как способ управления накоплением влаги в почвах

Гари Петерсон, Колорадский государственный университет

Профессор Гари Петерсон — человек не только глубоких знаний, но и открытый собеседник, способный увлечь практиков оригинальными идеями и простотой ясной мысли. На конференции в Днепропетровске, где Петерсон читал этот доклад, он моментально оброс друзьями и новыми знакомствами, его приглашали в гости, в хозяйства, и он откликался искренне, потому что ему хватило недели пребывания на этой земле, чтобы полюбить Украину.

https://www.youtube.com/watch?v=c5jfqoOICCI

Когда почву механически обрабатывают, влажная почва открывается на поверхности. Это значит, что начинается быстрое испарение сразу после обработки (рис. 8). Очевидно, что, если механическая обработка используется для борьбы с сорняками, она приводит к расходованию влаги, т.к. постоянно подвергает влажную почву быстрому испарению на поверхности.

В отличие от этого, технология no-till, в которой используется контроль сорняков при помощи гербицидов, не приводит к испарению, т.к. воздействия на почву не оказывается. Почва остается влажнее на поверхности, а, следовательно, следующий дождь не будет заново смачивать сухую почву, а будет проникать глубже в почву и накапливаться для использования в будущем.

Защита почвенных агрегатов от влияния дождевых капель

В засушливых условиях естественные осадки — единственно доступный источник влаги. Полузасушливые регионы, например Восточная Европа и Западная Азия, получают непостоянное и ограниченное количество осадков. Поэтому успешное выращивание культур на неорошаемых почвах зависит от адекватного накопления воды в почве для поддержания культуры до выпадения следующих осадков.

1) накопление воды — сохранение осадков в почве;

Какая почва лучше удерживает влагу? Почва, где больше глины Почва, где больше песка

2) удержание воды — сохранение воды в почве для более позднего использования культурами;

3) эффективность использования воды — эффективное использование воды для получения оптимального урожая. Лишь недавно у нас появилась технология, которая значительно изменила подход к управлению осадками на неорошаемых землях. Когда механическая обработка почвы была единственным способом контроля сорняков и подготовки семенного ложа, управление накоплением осадков и удержанием их в почве было очень трудоемкими процессом.

Обрабатываемые поля вообще не были покрыты и были в значительной мере подвержены влиянию ветровой и водной эрозии. Интенсивная обработка почвы оказывает много отрицательных эффектов на саму почву, включая снижение количества органического вещества и повреждение структуры почвы. Использование сокращенной обработки и no-till позволяет нам эффективно собирать воду и сохранять ее.

Мы должны стараться, чтобы вода, содержащаяся в капле дождя, немедленно попадала в промежутки между почвенными агрегатами и удерживалась там для дальнейшего ее использования культурой. Для начала давайте представим себе улавливание осадков с точки зрения капли дождя, которая ударяется о поверхность почвы и проникает вглубь (рис. 1).

Поступление воды в почву, на первый взгляд, выглядит очень простым процессом, когда поступающая вода просто вытесняет присутствующий в почве воздух. Однако на самом деле это сложный процесс, т.к. скорость инфильтрации воды в почву подвержена влиянию множества факторов, например, пористости почвы, содержания воды в почве и проницаемости профиля почвы.

Текстура почвы сильно влияет на скорость инфильтрации, но при помощи менеджмента текстуру почвы изменить нельзя. Большое количество макропор на поверхности (большие поры), как и те, которые присутствуют в почвах с грубой структурой (песчаные суглинки и т.д.), увеличивают скорость инфильтрации влаги.

Агрегация почвы также управляет размером макропор почвы. Таким образом, почвы с одинаковой структурой, но с разной степенью агрегации могут значительно отличаться в плане размера макропор. К счастью и к сожалению, степень агрегации почвы можно изменить при помощи управленческих методов, например, no-till, добавления растительных остатков, которые помогают восстановить агрегацию.

Исключительно важно помнить, что почвы с мелкой структурой, например, пылеватые суглинки или тяжелые глинистые суглинки, оставались хорошо структурированными, чтобы существовали открытые проходы для движения воды вниз. Помните, любая технология, которая уменьшает структурный размер, будет уменьшать размер пор на поверхности, а, следовательно, ограничивать проникновение воды в почву.

Предлагаем ознакомиться  Грунт для спатифиллума: состав почвы для посадки и пересадки

Самой лучшей в этом плане является структура, которая может сопротивляться изменениям. Почвы со слабой структурой быстро теряют свою способность впитывать воду, если структурные агрегаты распадаются, и поры на поверхности почвы становятся меньше. Это может происходить либо из-за слишком интенсивной обработки почвы, либо в силу природных явлений, например, дождя.

Непосредственно поверхность почвы должна представлять интерес для менеджмента, т.к. условия, возникающие на поверхности почвы, предопределяют способность улавливать влагу. При работе в условиях засухи наша цель — использовать такие методы, которые приводят к увеличению степени инфильтрации реалистичным и экономически выгодным способом в рамках определенной системы выращивания культур.

Что же действительно происходит, когда капля падает на поверхность почвы? Размер капель зависит от силы грозы, которая, в свою очередь, предопределяется климатом определенного географического региона. Диаметр капель варьирует от 0,25 до 6 мм (средний — около 3 мм), а теперь сравните диаметр капли с диаметром почвенных агрегатов, в которые попадает эта капля, а почва, в свою очередь, ничем не покрыта;

размер почвенных агрегатов обычно составляет менее 1 мм. Когда капля диаметром 3 мм, летящая со скоростью 750 см/сек, ударяется в агрегат диаметром меньше 1 мм, повреждение зачастую очень значительное. Если привести это к относительной массе, то этот феномен аналогичен тому, что в человека весом 80 кг врезается автомобиль весом 1600 кг, двигавшийся со скоростью 27 км/ч.

Дождь с ветром, который ускоряет скорость капли, приводит к большему воздействию, т.к. ускоренная ветром капля несет в себе заряд энергии в 2,75 раз больше, чем дождь при штиле. Вполне очевидно, что почвенные агрегаты будут разрушены, особенно, если в них постоянно ударяются капли дождя при грозе любой продолжительности.

Энергия дождевых капель отрицательно воздействует на структуру поверхности почвы, буквально «взрывая» агрегаты почвы. Когда агрегаты взрываются, оставшиеся маленькие частицы забивают пространство макропор почвы, и скорость инфильтрации снижается (рис. 2). Очевидно, что во время непродолжительной или несильной грозы влияние дождевых капель будет меньше.

Удерживание воды можно осуществлять на адекватном уровне, если мы сможем сохранить поры на поверхности почвы открытыми. Поэтому защита почвенных агрегатов от воздействия капель дождя — ключ к сохранению максимальной степени улавливания воды для определенной ситуации на почве (рис. 3).

Технология no-till, при которой растительные остатки остаются на поверхности, — частичный ответ на то, как защитить почвенные агрегаты. На рисунке 3 вы видите, как растительные остатки впитывают энергию дождевых капель, а поэтому почвенные агрегаты остаются неповрежденными. Таким образом, инфильтрация воды проходит в нормальном режиме.

При no-till покров почвы сохраняется круглый год, т.к. общая степень покрытия почвы представляет собой сумму покрова, образуемого самой растущей культурой, и покрова, созданного растительными остатками. Очевидно, что покрытие почвы очень динамично и может колебаться от 0% до 100% в рамках одного вегетационного сезона, в зависимости от того, какая культура сейчас растет и какая технология обработки почвы используется.

Во время посева, например, покрытие почвы состоит только из растительных остатков. По мере роста культуры покрытие уже в основном осуществляется листвой самой культуры. Когда покров, созданный самой культурой, принимает на себя удар капли дождя, так же, как и растительные остатки, вода плавно скатывается на поверхность почвы со значительно меньшим зарядом энергии, поэтому почвенные агрегаты подвержены меньшей степени разрушения, поры на поверхности почвы остаются открытыми, а инфильтрация поддерживается на соответствующем уровне.

По мере роста культуры количество растительных остатков снижается, т.к. происходит естественный распад за счет активности микроорганизмов. Когда покров, созданный растущей культурой, начинает уменьшаться, растительные остатки опять становятся основным средством защиты почвы, и цикл завершается. Помните о том, что механическая обработка почвы, во время, и после роста культур снижает количество растительных остатков на поверхности, а, следовательно, и защищенность поверхности почвы.

Предлагаем ознакомиться  Как правильно выращивать розмарин в квартире при помощи семян или веточек

Польза от накопления воды благодаря покрову наиболее ощутима в регионах с летними осадками; например, циклы выращивания кукурузы (Zea mays L.) или зернового сорго в Великих равнинах Северной Америки приходятся на период, когда выпадает 75% годовых осадков. Наоборот, неорошаемые регионы, где зимой выпадает не очень много осадков (Северо-запад Тихоокеанского побережья в США), не обладают хорошо развитым покровом, когда выпадает большая часть осадков.

Другое воздействие растительных остатков на удержание воды

Помимо поглощения энергии капель и защиты почвенных агрегатов от разрушения растительные остатки физически блокируют отток воды, снижают уровни испарения во время дождя, позволяя воде уйти в профиль почвы до начала оттока. Общая инфильтрация воды является следствием того, насколько долго вода будет находиться в контакте с почвой (время возможности) до того, как она начнет стекать вниз по склону.

Увеличение этой временной составляющей является ключевым управленческим инструментом в накоплении воды. Основным принципом увеличения «времени возможности» является предотвращение оттока воды, замедление его, и т.о предоставление возможности подольше находиться в контакте с почвой, а, следовательно, впитываться.

Агрегация почвы снижается при увеличении интенсивности обработки почвы и/ количества лет культивации (рис. 4). Механическая обработка почвы отрицательно воздействует на агрегаты почвы по двум основным причинам: 1) физическое измельчение, которое приводит к сокращению размера агрегатов; 2) увеличение уровней окисления органического вещества, которое возникает из-за разрушения макроагрегатов и последующего открытия органических соединений почвенным организмам.

Распределение размеров агрегатов также меняется таким образом, что микропористость увеличивается за счет макропористости, что приводит к снижению скорости инфильтрации. Степень, с которой механическая обработка влияет на инфильтрацию, регулируется сложным взаимодействием типа обработки, климата (особенно осадки и температура) и времени, совместно с такими характеристиками почвы, как структура, органическая структура и содержание органического вещества.

Поэтому долгосрочная обработка любой почвы снижает сопротивляемость агрегатов к физическому разрушению, например, воздействие капель дождя и механической обработки почвы любого рода. Однако, как глинистые минералы в почве, так и органическое вещество стабилизируют почвенные агрегаты и делают их устойчивыми к физическому разрушению. Уменьшение количества органического вещества снижает стабильность агрегатов, особенно, если она и так низкая.

накоплением и декомпозицией. Первый определяется в основном количеством внесенной органики, сильно зависящей от осадков и орошения. Второй — преимущественно температурой. Цель сохранения или увеличения уровней органического вещества легче достижима в прохладных, увлажненных условиях, чем в жарких и сухих.

«Свежесть» соединений органического вещества необходима для стабильности агрегатов. В почвенных экосистемах вновь добавленные или частично разложившиеся растительные остатки и продукты их распада, известные также как «молодые гуминовые субстанции», создают более «мобильный» массив органического вещества.

Невспаханная земля. Сохраненная влага

Старые или более стабильные гуминовые субстанции, которые более устойчивы к дальнейшему распаду, создают «стабильный» массив органического вещества. Всеобще признано, что мобильный массив органического вещества регулирует силу подачи питательных веществ в почве, особенно азота, тогда как мобильный и стабильный массивы влияют на физические качества почвы, например, формирование агрегатов и структурную стабильность.

Накопление снега и удержание талых вод

Многие неорошаемые земли получают значительное количество годовых осадков в виде снега. Эффективное накопление воды снега имеет две характеристики: 1) улавливание снега само по себе и 2) улавливание талых вод. Поскольку снег зачастую сопровождается ветром, принципы улавливания снега такие же, как принципы, используемые в защите почв от ветровой эрозии.

Растительные остатки на корню, ветрозащитные полосы, полосная обработка и искусственные барьеры использовались для максимизации улавливания снега. Основной принцип этих устройств заключается в создании областей, где снижается скорость ветра с подветренной стороны и барьера, что приводит к улавливанию частиц снега с другой стороны барьера.

Исследования ученых с Великих равнин США показали, что стерня на корню сохраняла 37% зимних осадков, а поля под паром без растительных остатков сохраняли лишь 9%. Пропорция поля, покрытая растительными остатками на корню, очевидно, влияет на улавливание снега. Ученые, изучающие влияние высоты среза подсолнечника на удержание снега, обнаружили высокую корреляцию между сохраненной влагой в почве и высотой среза: чем выше срез, тем больше снега улавливается.

Внедрение технологии no-till позволило значительно улучшить улавливание снега при помощи растительных остатков на корню. До начала использования no-till механическая обработка, необходимая для контроля сорняков, приводила к снижению пропорции растительных остатков на корню и общей пропорции покрытия почвы растительными остатками, а, следовательно, к снижению улавливания снега.

Предлагаем ознакомиться  Салаты на зиму – 5 самых вкусных рецептов || Какие салаты можно заготовить на зиму

Улавливание снегопада остается самой простой частью накопления ресурса влаги снега; улавливание талых вод намного менее предсказуемое и управляемое. Например, если почва замерзает до снегопада, у воды меньше шансов впитаться, по сравнению со случаями, когда почва не замерзла. На северных широтах почвы обычно замерзают до выпадения снега.

Более того, глубина промерзания почвы зависит от количества воды в почве осенью, а также от изолирующего эффекта снега, который увеличивается при увеличении глубины снежного покрова. Сухие почвы промерзают глубже и быстрее, чем влажные, но замерзшие сухие почвы снижают отток воды по сравнению с влажными почвами.

Поддержание инфильтрации на должном уровне, когда почва замерзает до снегопада и/или до выпадения зимних дождей, представляет трудность. Уровни инфильтрации замерзших почв определяются двумя факторами: 1) структурой замерзшей почвы, т.е. маленькие гранулы или большие агрегаты, похожие на бетон, 2) содержанием воды в почве во время морозов.

Почвы, которые замерзли с низким уровнем содержания влаги, не мешают проникновению воды, т.к. агрегаты оставляют достаточно места для инфильтрации. Наоборот, почвы, замерзшие с большим содержанием воды, замерзают в массивные, плотные структуры (как бетон) и практически не дают воде возможности проникнуть вовнутрь.

Резкая оттепель и дождь на таких почвах могут привести к большому оттоку и эрозии. Накопление зимних осадков можно максимизировать, используя следующие принципы: 1) улавливание снега при помощи растительных остатков на корню; 2) максимизация макропор на поверхности в те периоды, когда почва замерзшая.

Синтез принципов накопления воды

Благоприятные условия для инфильтрации на самой поверхности почвы и достаточное количество времени для инфильтрации — ключи к эффективному накоплению воды. Однако наиболее важным принципом является защита поверхности почвы от энергии капли. В течение зимних месяцев в зонах с умеренным климатом, когда еще не появились большие листья для принятия энергии капли и пропускания воды, растительность (растительные остатки) осуществляют функцию снижения уровней оттока.

Выводы

Ключом к эффективному улавливанию воды являются благоприятные условия на поверхности почвы для того, чтобы вода могла сразу входить в почву, а также те (условия), которые дают достаточно времени для инфильтрации. Наиболее важный принцип для достижения вхождения воды в почву — защита поверхности от энергии капель дождя.

Система no-till обеспечивает покрытие растущими культурами и растительными остатками. Покрытие поглощает энергию капель, защищает почвенные агрегаты и увеличивает размер макропор. В то же время, это покрытие замедляет отток, увеличивая тем самым накопление воды в почве для использования последующей культурой.

Для сохранения максимального количества накопленной влаги необходимо свести к минимуму испарение. No-till сокращает испарение, т.к. при этой технологии на поверхности остаются растительные остатки, которые снижают температуру почвы и поднимают ветер над почвой. Использование воды сорняками — трата влаги, которая могла бы быть доступна для культурных растений.

Механическая обработка обычно мгновенно прекращает вынос воды сорняками, однако открывает влажную почву воздействию атмосферы, что приводит к увеличению потерь в результате испарения. При использовании системы no-till контроль сорняков осуществляется при помощи гербицидов, что предотвращает пагубное воздействие на почву по сравнению с механической обработкой, при этом вода накапливается в почве. Это особенно важно в таких странах, как Украина, где основная часть осадков выпадает летом.

Оцените статью
Огородник 24
Adblock detector